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Abst rac t -  This paper describes a new scheduling solution for large number multi-product batch processes with 
complex intermediate storage system. Recently many batch chemical industries have turned their attention to a 
more efficient system known as a pipeless batch system. But existing plants need to change their systems to pipe- 
less systems, piece by piece. In this case, current systems are changed to pipeless systems by way of non critical 
process operations such as through the use of intermediate storage. We have taken the conventional batch plant 
with a pipeless storage system as an objective process. Although the operation of a pipeless storage system be- 
comes more complex, its efficiency is very high. With this system, all of the storage should be commonly used by 
any batch unit. For this reason, solving the optimal scheduling problem of this system with a mathematical method 
is very difficult. Despite the attempts of many previous researches, there has been no contribution which solves the 
scheduling of intermediate storage for complex batch processes. In this paper, we have developed a hybrid system 
of heuristics and Simulated Annealing (SA) for large multi-product processes using a pipeless storage system. The 
results of this study show that the performance and computational time of this method are superior to that of SA 
and Rapid Access Extensive Search (RAES) methods. 
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INTRODUCTION 

As the trend toward multi-product batch processes has in- 
creased with the Chemical Process Industry (CPI), multi-prod- 
uct batch scheduling has been actively studied. In batch pro- 
cess operations, there are various methods of operation for in- 
creasing the productivity. One method is adjusting the inter- 
mediate storage policies. The different types of intermediate 
storage policies which have been frequently studied are unli- 
mited intermediate storage (I/IS), finite intermediate storage 
(FIS), no intermediate storage (NIS), zero wait (ZW) and mix- 
ed intermediate storage (MIS) policies. 

Recently, Ku and Karimi [1990] proposed a new method 
of using intermediate storage tanks, called a shared storage 
system, as a block of the MIS policy. Jung et al. [1996] have 
proposed the common intermediate storage (CIS) policy, in 
which some storage is shared throughout the whole system 
to accomplish a more complete flexibility. It has been accept- 
ed as a highly efficient intermediate storage policy. 

There are also many contributions for the scheduling of 
multi-product batch processes with several intermediate stor- 
age policies. A major difficulty is that oplLmal scheduling pro- 
blems for multi-product batch processes are NP-complete. 
Over the past decade, two kinds of methodologies for solv- 
ing these kinds of scheduling problems have been developed. 
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One method is based on well known mathematical optimizat- 
ion techniques, such as Mixed Integer Linear Programming 
(MII JP) and Mixed Integer Non-Linear Programming (MI/qLP). 
The other method is heuristic or rule based, like branch and 
bound (BAB) or some application of artificial intelligence. 

Recently, Ku and Karimi [1991] have studied SA as a new 
method which is a type of random search using a monte-car- 
lotic algorithm. This method has improved the results of sev- 
eral types of  scheduling problems. 

Jung et al. [1994] also have developed a Modified Simu- 
lated Annealing Approach (MSA) which is composed of a 
two stage search algorithm. It has provided excellent results 
for scheduling problems with UIS and NIS policies, it has 
not been applied to the batch scheduling of the complicated 
intermediate storage policy, for example, CIS. 

Since the pipeless system for the batch chemical plant 
was introduced, research and application of pipeless systems 
in industry have increased. Pipeless systems are being con- 
sidered, not only for grassroots plants but also for the rede- 
sign of existing plants. Usually, the objective of the latter 
case is to achieve a partial improvement of efficiency before 
constructing whole pipeless batch plant. In these cases, de- 
signers would like to apply pipeless systems to non critical 
parts of the existing processes. One of the process which is 
non critical for operation is the intermediate storage system. 
Moreover, the efficiency of the shared pipeless storage system 
is very high and it achieves a great improvement in produc- 



226 H.J. Kim et al. 

tivity [Jung et al., 1996]. 
The scheduling of batch chemical processes under pipeless 

intermediate systems with MILP or MINLP is difficult to sol- 
ve because of its complicated operation. Most industries have 
more than 20 products. As the problem size increases the dif- 
ficulty in solving the problem increases exponentially. 

In this paper we have developed a hybrid system using heu- 
ristics and SA for large multi-product batch chemical pro- 
cesses with a pipeless intermediate storage system. For pipe- 
tess systems, the transfer time of materials is much shorter 
than conventional pipe-valve systems. We can define the trans- 
fer time of materials as that of vessel time from dispatching 
to charging. The transfer time of a pipeless vessel varies with 
the length of vessel moving, so we can fix the transfer time. 
The price of the vessel is relatively low so it can be con- 
sidered an UIS type. But for considering more actual system, 
we are taking into account that the number of vessels is a 
given finite number. After setting all the assumptions of the 
pipeless intermediate storage, we solved the problems using 
one or two moving vessels for intermediates. We also solv- 
ed the same problems using RAES and SA of Ku and Kar- 
imi [1991] with the same parameters. Four hundred ran- 
domly generated problems were solved and the results of 
this study outperformed RAES and SA. 

C O N V E N T I O N A L  C H E M I C A L  BATCH PLANT 
W I T H  PIPELESS MO V A BL E  STORAGE 

Even in a flowshop batch plant the ordered product items 
can be changed. In case of changing the ordered product items, 
the operations which require specific intermediate storage pol- 
icies, i.e., NIS, FIS and ZW modes, can be changed in the 
same multi-batch system. In order to meet this requirement 
of flexible operation, Jung et al. [1996] suggest the CIS in- 
termediate storage system. An example of the system diagram 
of CIS with conventional pipe-valve batch processes of fixed 
storage is shown in Fig. 1. 

The conventional CIS system has many pipelines for sto- 
rage and may cause an overcharge capital costs as well as 
have a high probability of creating faults. The system sug- 
gested in this paper is simpler, with pipeless storage vessels 
which move between storage, set-up site and units to trans- 
fer the materials. It is not a type of full scale pipeless plant 
but a partial use of the pipeless concept, i.e., only storage 
facilities are operated as pipeless moving vessels. Materials 
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Fig. 1. Conventional pipe-valve batch process with fixed stor- 
ages. 
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Fig. 2. Conventional batch process with pipeless movable stor- 
age system. 

are still transferred by pipes and pumps from unit to unit. The 
schematic diagram of the pipeless type of intermediate storage 
for a batch plant is shown in Fig. 2. 

For this system, a new transfer time between storage and 
the unit should be defined. Since the transfer time between 
storage and unit of pipeless intermediate storage system is the 
sum of times of moving storage, the total transfer time may 
become shorter than that of conventional pipe-valve and pump 
storage system. This is due to the net material transfer time 
being overwhelmingly reduced. Moreover, the pipeless sys- 
tem can greatly reduce the waste material generated by the 
cleaning of pipelines and valve-pumps. This system also com- 
pletes the highly flexible operation of intermediate storage as 
the CIS system. 

We can guess two possible types of pipeless intermediate 
storage systems. One type uses unlimited number of moving 
vessels and the other uses limited number of moving vessels. 
We have focused on the latter case. The completion time of 
the pipeless storage system has also been proven with same 
procedures of the CIS system of Jung et at. [1996]. 

Similarly to the CIS system, the completion time of the 
pipeless movable storage system is not longer than that of 
the NIS system [Eq. (2)] and not shorter than that of the UIS 
system [Eq. (1)]. 

Cij (UIS) = max [C(i_I)j, Ci(j_I) ] + tij (1) 

Cij (NIS) = max [C(i_I) j,Ci(j_l) , C(i_IXj+I) - tij  ] q- tij (2) 

When one of the common storage vessels is vacant, the com- 
pletion time is given by Eq. (1). If no storage vessel is avail- 
able, the completion time is given by Eq. (2). If one of the stor- 
age vessels is partially available, the completion time varies 
from Eq. (1) to the value of C(/-l)(/~.l). So storage starting time 
SS(~k) and storage ending time SE(I,k) for product l after unit 
k should be known. For product l after unit k, the time 
when one of the storage vessels is about to reach a usable 
state (i.e., beginning of the storage ending time) is earlier than 
the completionime of the NIS policy for i product at j unit, 
then the completion time for pipeless movable storage system 
(C0(p/)) becomes (SE(Lk)), otherwise Q(p/) is given by Eq. (2). 

Assuming that transfer and setup times are zero to make 
the problem simpler, we can describe the system as follows. 

If C~(UIS) > C(i-~)~,~) or at least one vessel is usable then 
C,,(p/)=Eq. (1). 
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S C )  Cij(UIS) ~ i(i_ l)(j+l ) 

first kind: SS(I,k) ~ SE(l,k) 

second kind: SS(I,k) ~ SE(l,k) 

third kind: SS(1,k)I~W~ISE(Lk) 

fourth kind: SS(l,k)gMl~ SE(I,k) 

Fig. 3. Four kinds of storage using pattern of one common 
storage without transfer and set up times. 

Else, if no vessel is usable then C0(p/)=E q. (2). 
Else, if some vessel is partially usable then we need stor- 

age using the time for minimum completion as the 
time of the process and we defme this situation as 
the storage checking state (sc). 

We have suggested a simpler method than the existing one 
to check the availability of storage vessels. For an estimation 
of the above mentioned sc state, we used a one step com- 
parison of the value of SS(I,k), Eq. (1) and C(~ u0+~. 

For the sc state, four kinds of storage using patterns are 
possible in the storage vessel as shown in Fig. 3. 

The storage using times that are concerned with the inter- 
val from Eq. (1) to Eq. (2) can be selected by the following 
conditions: 

SS(I,k) < C(~ 1)(j+l> (condition 1) 

SE(I,k) > Eq. (1) (condition 2) 

If both condition 1 and condition 2 are satisfied, the situa- 
tion of storage should be considered as the sc state. We can 
compress the above four type into one equation for the sc 
state. 

C~j(p/) = min [C~/(NIS), SE(/,k)] (3) 

Rarely do the second, third, and fourth kind of storage us- 
ing pattems arise in one storage vessel sequentially. Thus, Eq. 
(3) should be modified as follows: 

Cij(p/) = min [c~jCNIS), max{SE*C/,k)}] (4) 

definition 1) SE*(/,k) is a set of storage ending (emptying) 
time (SE*(l,k)s) which satisfies both condition 1 and condi- 
tion 2 for product i after unit j. 

If  the number (P) of  storage vessels is a multiple (P>I), 
then Eq. (4) should be modified again as follows: 

C~j(p/) = min[C~j(NIS), max{S~C/,k)}, max{Sl~Cl, k)}, 
-.-, max{SE~(/,k)}] (5) 

definition 2) SE*(l,k) is a set of storage ending (emptying) 
time (SE*(/,k)s) of the pth (p=l,2,...,P) storage vessel which 
satisfies both condition 1 and condition 2 for product i after 
unit j. 

We additionally suggested the algorithm to define SSv(i,j ) 
and SEv(~j) (i=1, ..., N, j=l ,  -.-, M) as a merging form in the 

recursive completion time determination algorithm. 

For given i and j: 
If (C0(UIS) < C(i_ 1~+1)) then 

Do (for every introduced intermediate storage p (p=l,2, 
---,P)) 
If (there is no [SSp(l,k), SEp(l,k)] to satisfy the con- 

dition 
SSv(I,k ) < C(,_ 1)~+1) and SEe(/,k)>C~j(UIS)) then 
SSe(i,j ) = C,,(UIS) 
SEp(i,j) = C(,_ ~)o+,) 

Else 
If (there are one or more SF_rgk)s to satisfy SF_r(~k) 

<C(i 1~1)) then 
SSe(/,j) = max(SEp(/,k)) (l=1,--., N, k=l, ..., M) 

= max(SE~Ct, k)) 
SEp(i,j) = C<,_ ,++,) 

Else 
sspci, j)  = 0 
SEp(i,j) = 0 and unit j should be holding the pro- 

duct i until the next unit j+ l  becomes 
ready to process the product i 

End if 
End if 

Continue 
Else 

for every introduced intermediate storage p(p=l, . . . ,P)  
SSp(i,j) = 0 
SEr(i,j) = 0 this block can be eliminated by the initial 

definition that every SSp(/,j) and SEp(/,j) is zero 
End if 

From all the above explanations, we can compose a com- 
pletion time algorithm with zero transfer and setup times of 
a pipeless storage system from the algorithm which defines 
SSp(i,j) and SEp(i,j). 

C0(p/) = max[C(+ 1>/, C++_,, min{max(S~(/,k)),  
maxCSE*Cl, k)),- . . ,  
max(SEe*(/,k)), C(i_ ~+o} - t+/] + t+ (6) 

SE*(I,k): every SEe(+k ) (1=1, ..., N, k=-l, ..., M) for storage 
p which satisfies both condition 1 and condition 2. 

We defined a o as the transfer time which is required for 
transferring product i out of unit j to (j+l), and S~++I)j as the 
set-up time which is required for preparing the (i+l)th prod- 

(1) (2) holding (1) (2) 

..+,J m i i i ~ 

unit  j + l  . ._+._. ai j aiJ 

m storage 
%% 

(a) (b) 

Iransfor time ~ processslng .me l Idle tln~ 

Fig. 4. Comparison of holding time in unit and used storage 
for some special cases. 
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uct after the i th product with a constant value. Additionally, 
as(/,k) should be defined as the storage clean-up and pre- 
paring time after using of 1 th product after k unit. We de- 
fined C~j as the completion time of processing the i th prod- 
uct at the j th unit. In actual operation, the completion time 
must include the processing time and the time of completely 
transferring out the i th product from j th unit. So we de- 
fined C~j=Cij+a/j for the true sense of the completion time of 
i th product at j unit. 

When zero transfer and set-up times are assumed and one 
of the storage vessels is available, the materials within the un- 
its can always use the storage and C~j(p/) is equal to Eq. (1). 
For the case of considering non-zero transfer and set-up 
times as shown in Fig. 4, although one of the storages is 
available, the situation can occur that holding the product in 
the unit is better than using the available storage since this 
doubles the transfer time when using storage. 

For unit j in Fig. 4, using storage operation (a) is better 
than product holding in unit (b), but for unit (j+l), operation 
(b) is better than operation (a). Consequently we did not know 
which altemative was the better choice. Operation and calcu- 
lation of the completion time of operation (a) is slightly sim- 
pler than operation (b) because the storage is always used if 
one of the storage vessels is available when C00JIS)<C(~_ ,)~+1). 
We named them 'operation (a)' and 'operation (b)' as mention- 
ed above. 

To consider non-zero transfer and set-up times, C0(UIS ) and 
C0(NIS ) are redefined as Eq. (7) and Eq. (8). We have intro- 
duced a new variable E a that is Ci/+%+S~(~§ 

C~:(UIS)=max[C(~ 1)~+% 1)~+S(~-1)~/, Ci(i-1)]+tq+ai(/ 1) (7) 

C~j(NIS)=max[C(~_ 1)j-ha(i_ 1)jq-S(i 1)ij, Ci(j 1), C(i 1)(j+l)-l-a(i- 1)(]+1) 

-bS(i 1)/q+1) - tiy - a N-  1)]+tij+aiq _ 1) (8 )  

The determination of completion time is similar with the 
case of zero transfer and set-up times except for the sc state 
procedure. Considering four kinds of partial use of storage 
vessels is slightly complicated. The storage use times of the 
products that are concerned with the interval from Eq. (7) 
to E(i-1)0§ (i.e., ith product needs storage) can be selected 
using the following conditions: 

SS(I,k) < E(~_ 1)~+l)+a~j+as(i,j) (condition 3) 

SE(l,k)+as(l,k) > Eq. (7) (condition 4) 

Using a similar reason as for the cases of zero transfer 
and set-up times, Eq. (9) with definition 2 can be composed 
for sc state. 

C0(P/)=min[E(~ ~)0§ max{S~ll(l,k)+as(l,k)}, 
max{ SE*(l,k)+ as(l,k) }, . . ., max { SE*(l,k)+as( l,k) } ] (9) 

It is assumed that the type of every storage vessel (p=l, 
---,P) introduced is the same, so as(i,j) for each storage is 
equal. 

At this point, the storage starting and ending times are re- 
quired. They are determined in a similar way as in the al- 
gorithm mentioned above. 

Given i and j: 
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I f  ( C 0 ( U / S )  < U_{i_ I)Q+I) ( f o r  o p e r a t i o n ( a ) ) ,  ~ S ) + a  o < ~ i  1~1) 

(for operation (b)) then 
Do (for every introduced intermediate storage p (p=l,2,---P)) 
If (there is no [SSv(I,k ), SE~(/,k)] to satisfy both condition 
1 and condition 2) then 

SSv(i,/)=C0(UIS) 
SEp(i,j)=E<, ,)~+l)+a 0 

Else 
If (there are one or more (SEp(l,k)+as(l,k))s to satisfy 

SE~(l,k)+as(l,k) < E(/_ 1~0§ a0 then 
SSp(i,j)=max(SEp(l,k)+as(l,k)) (/=1, .-., N, k=l,  ..., M) 

=max(SE~(l,k)+as(l,k) 
Else 

ss.(i,j)=0 
SEp(i,j)=0 and unit j should be holding product i until 

the next unit (j+l) becomes ready to process 
the product i 

End ff 
End if 
Continue 

Else 
for every intermediate storage p(p=l,--. ,P) introduced 
SS,(i,j)=0 
SE~(i,j)=0 this block can be eliminated by the initial defini- 

tion stating that every SSp(i,j) and SEp(i,j) is zero 
End if 

For operation (a): 

Co(pl)--max[E~i 1~, C~-1), min{max(SF_~ (l,k)+as(l,k)), 
max(SE*(l,k)+as(l,k)), . . ., 
max(SE*(l,k)+as(l,k)), E(i - 1~+1)} - t~ - a N_ 1)]+tij+a/0 _ 1) 

(10) 
For the case of operation (b): 

Ci/(ff/)=max[max{E(i_ 1)j, C/(1 _ 1), E(i 1~+1)- tij - a N- 1) 

(max[E(/ 1)/, Ciq- 1)]+aio- 1)> E(I 1)0+1)- ti/-- aio- 1)), 
min{max(SE~(l,k)+as(l,k)), 
max(SE*(l,k)+as(l,k)), ..., (11) 
max(SE*(l,k)+as(l,k)), E~i-1~+1)~ -- tij - a N- 1)]+t0+a ~_ 1) 

SE~,(I,k): every SEe(I,k) (l=1, ..., N, k=l, ..., M) for storage 
p which satisfies both condition 3 and condition 4. 

At the final stage, we can combine the completion time 
algorithm for the ZW block by Jung et al. [1994] and the 
earlier mentioned completion time algorithm of Eq. (10) and 
(11). Finally, we determine the completion times of the prod- 
ucts in a pipeless storage system with a ZW block exten- 
ding from unit Q to R without transfer and set-up times. For 
products i=l,2,..-,N and operation (a) : 

Ci:(p/)=max[E(i 1)j, Cio 1), min{max(SE*(l,k)+as(l,k)), 
max(SF~(l,k)+as(l,k)), ..., 
max(SE*(l,k)+as(l,k)), E<i-1~+1)} - tij - ai~-1)]+ti:+ai~-1) 
(for j=l,  2, -.., Q - 1 and R+I,  R+2, ...M) (12) 

Cio(p/)=max C~ - ~ t# -/~=oa#, C,Q_,) +tio+ai(e_ 1) 

(for j=Q) (13) 

Cij(p/)=Cjc/ l)+ti/+a~_ 1) (for j=Q+I, . . - ,R - 1) (14) 

C~(p/)=max[Ci(n 1), min{max(SE*(l,k)+as(l,k)), 
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max(S~.,.(l,k)+as(1,k)), .. ., 
max(SE~p(l,k)+as(1,k)), E(i ,~+,~-t o - aio l~]+to+aio 1) 
(for j=R) (15) 

C*(p/)=C0(p/)+a 0 (16) 

F R R-1 
where, C~R = max ~Cti_l~ o +S(i-l~o + ~ tij + L j::Q j=Q-1 aij 'C(i-1)(Q +1) 

R R-1 
+S(i-1)/(Q+x)+ j=Q~+I t# + ~ ai j ," ' ,  

R R-1 ] 
C(i_l) R + S(i_l~ R + ,~, tij + j  j-~ -~R_I aij 

For operation (b), Eq. (12) should be replaced by Eq. (17). 

C~0(P/)=max[max{Et, nj, Ci~ t~, E~i lxm~-t0-ai~-l~ 
(for max[E(,_ 1), Ci(/- m)]+aiq- ,) > E(,_ 1)(/+1)- to - -  a,0 ,~), 
min{max(S~11(l,k)+as(l,k)), 
max(SE*(l,k)+as(l,k)), ..., max(SEp*(l,k)+as(l,k)), 
F~.)~§ ) (for j=l,  2, ..., Q -  1 
and R+I, R=2,. . . ,  M) (17) 

Where SE*(/,k), SSp(i,j) and SEp(i,j) have been defined ear- 
lier. 

A HYBRID SYSTEM OF HEURISTICS AND 
SIMULATED A N N E A L I N G  

In recent years, SA has been successfully used to solve 
several combinatorial optimization problems. The basic idea 
behind SA is to consider even a poor solution as an accept- 
able intermediate solution with a suitable probability for avo- 
iding a local optimum. It uses a concept consisting of dif- 
ferent configurations of energies for an analogous physical 
state. Usually, physical systems, i.e., annealing steel, have 
many locally minimum analogous states. The algorithm starts 
with a randomly chosen initial state. In each step of the al- 
gorithm, new candidate solutions are generated from the cur- 
rent solution by means of random perturbations. Let E1 be 
the objective function value of the current solution and E2 
be that of the new solution. For the case of minimization 
problems, if E :<  El, the new solution becomes E2 necessari- 
ly. But for the case of Ez>E1, both of El and E2 can be new 
solutions with proper probabilities. The probability of accep- 
ting Fa as the new solution is given by P(AE)=exp[- (E2- El) 
/kt]. A random number which is uniformly distributed in the 
interval [0, 1] is generated and compared with P(AE). If the 
generated random number is less than P(AE), the new solu- 
tion is changed back to the old one. Otherwise, it is discard- 
ed and another solution is generated from the current solu- 
tion. The algorithm continues when a certain termination cri- 
terion, such as a prospective number of rearrangements is 
satisfied. This scheme is known as the Metropolis algorithm. 

The efficiency of SA is strongly affected by the follow- 
ing parameters, the initial value of the control parameter T= 
kt, the number of solutions generated at each T, the decreasing 
rate of T, and the efficiency in generating new solutions from 
old solutions. SA is terminated after 3N 3 (N is the number of 
products) sequences have been generated. The basic issue is 

how the algorithm should move from one sequence to an- 
other. Ku and Karimi [1991] used a simple strategy of re- 
ducing 5 % of kt for each iteration which is composed using 
20 discrete iteration steps, i. e., kt remains constant for each 
step but decreases by 5 % from one group to the next rear- 
rangement with 0.15N 3 iterations. This means that the final 
value of kt is 0.952o or approximately 0.36 times the initial 
kt value. 

Thus, the initial probability of up-hill movement suggest- 
ed by Ku and Karimi [1991] is as follows: 

P,(AE)=exp(- ( E , -  Eo)/(ktl)) 
3OOO 

=exp( -  ( E l -  Eo )/(1.5( ~ [AE, 1/3000)))-0.513 (18) 

The last probability is as follows: 

P2O(AE)=0.36 e x p ( -  (E, - Ei-0/(ktl)) 
3000 

=0.36 exp ( -  (E~ - E , ) / (1 .5  ( 5". [AE, V3000)))-0.185 
(19) 

In the case of SA, the initial probability of up-hill move- 
ment is nearly 50 percent and the last probability is about 20 
percent. 

We have developed a new method of SA based on the Met- 
ropolis Algorithm called a hybrid system. This system is com- 
posed of a two-stage search algorithm. In the first stage, the 
RAES algorithm was used to obtain a better location of the 
initial state. RAES has been reported to be a simple and pre- 
dominant method for flowshop scheduling. RAES was pro- 
posed as a method to solve the multiunit UIS scheduling pro- 
blem. It is a two-phase heuristic with a recursive improve- 
ment strategy. In the first phase, a pseudo-two-unit UIS pro- 
blem is generated from the original M-unit problem as fol- 
lows: 

M M 
t'l=~l(M-/+l)t~ " * j=a "to N (20) t/2 = ~ J i=1,2, "", 

Where t* is the processing time of product i on unit j for 
the pseudo-two-unit problem. Then Eq. (20) is applied to 
Johnson's algorithm to generate an initial sequence. In the 
second phase, the initial sequence is improved by generat- 
ing (N-l) sequences via pairwise interchanges of adjacent pro- 
ducts in the sequence and selecting the best of  those as the 
next solution. The procedure is repeated until no improvement 
is found. The hybrid system of this study used the result of 
RAES as the initial sequence. 

In small scheduling problems (N<10) ,  average percent- 
age deviations of RAES based on the optimal solutions are 
reported within 10 percent for a batch flowshop with UIS. In 
large problems ( N =  > _ 15), they have been shown to be within 
20 percent the optimum. For this reason, an initial probabili- 
ty of a hybrid system has not to use PI(AE)-4).5 like SA. 
That's because this value results in giving up a lot of blocks 
of good solutions. At the second stage, we used a lower pro- 
bability of  up-hill movement. 

Thus if it is not a predominant solution, it is hardly ac- 
cepted as a new one. We guessed and calculated the proba- 
bility of up-hill movement. We searched for the probability 
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of up-hill movement between 0.2 and 0.5. So we solved 
many problems with several initial values of the control pa- 
rameter T=kt, from 0.6 to 0.95. From the results, we got the 
optimal initial values of the control parameter T of 0.75 for 
small size problems and 0.8 for large size problems. 

Therefore we controlled initial probability of up-hill move- 
ment as follows. 

In the case of small size problems: 

Pl(AE)=exp(- (E , -  E~ 1)/(kt,)) 
3O0O 

=exp(-  (E , -  E~ - 1)/(0.75( ~ 1AEil/3000)))--0.264 
' (21) 

P2o(AE)=0.36 exp( -  (E, - E,_ 1)/(kt,)) 
3OO0 

=0.36 exp(- (E~ - ~ - 1)/(0.75( E I AE]/3000)))-0.095 
' (22) 

In the case of large size problems: 

P l ( A E ) = e x p ( -  (El-- E, 1)/(kt,)) 
3OOO 

=exp(-  (E , -  Ei 1)/(0.8 ( Z IAE~I/3000)))'q3.287 (23) 

P2o(AE)=0.36 exp( -  (E , -  E, 1)/(kt,)) 
3OOO 

=0.36 exp ( - ( E , -  Ei_1)/(0.85 (X  IAE,I/3000)))--0.103 
(24) 

The initial probability of up-hill movement is nearly 27 
to 29 percent and the last one is approximately 10 percent. 
The probability of up-hill movement was reduced to around 
50 percent from that of SA. 

EVALUATION AND CONCLUSIONS 

We have tested various problems which were randomly ge- 
nerated to evaluate the performance of this study. The perfor- 
mance measures are makespan and computational time. The 
size of problems that have been used in this study consisted 
of comparatively small size problems (N=6, 7, 8, 9, 10) as 
well as large size problems (N=15, 20, 25, 30, 35). The unit 
numbers (M) for each problem are 4 and 8. For each prob- 
lem size, we have tested 20 problems, 10 problems of op- 
eration(a) and 10 problems of operation(b), which were gen- 
erated randomly. In total we have tested 400 problems. For 
the small size problems, we have assumed one movable ves- 
sel and for large ones we assumed two movable storage ves- 
sels. 

The values of set-up, transfer, and clean-up time were gen- 
erated randomly between 1 and 9, and the values of proces- 
sing time were generated randomly between 10 and 99. 

We solved these problems using RAES, SA, and the hy- 
brid system for comparing the efficiency of each method. 

To analyze the efficiency of each method, we took the 
RAES makespan as a basis and we defined the superiority(S 
(%)) as the difference of the result of each method from this 
basis. The equation for S is as follows: 

S = Solution of RAES- Solution of each method * 100 (25) 
Solution of RAES 

The value of S can be either a positive or a negative 
number. The method which has the largest value of S is the 
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Fig. 5. Superiority to RAES of  SA and this w o r k  of  Small 
Size Problems.  

best method. The actual results are as shown in Fig. 5 and 
6. Fig. 5 is the diagram for the small size problems and Fig. 
6 is the diagram for large size problems. 

These figures show that the hybrid system is superior to 
SA. In the case of the smaller size problems, the results of 
this system are slightly better than those of SA, but the 
results of problems like 6 •  10•  7 •  and 8 •  show 
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Fig. 6. Superiority to RAES of  SA and this w o r k  of  Large 
Size Problems.  

July, 1997 



Scheduling of Pipeless Storage Policy 231 

Distance from optimal(%) 

A 

s 
. ,d  
Q .  
O 

E 

e~ 

' u  

614 714 514 $x4 6x8 710 818 9x8 

Problem Size 

Fig. 7. Average distance f rom Opt ima l  solution. 

Large Size Problem 

that superiorities of SA have negative numbers. So com- 
pared with this system, there are large differences between 
the hybrid system and SA. As the size of problems grows, 
the results become much better than those of  SA. 

In case of  small problems (N=6, 7, 8, 9), we could get 
the optimal solutions by combinatorial search method. So 
we also solved the small problems by combinatorial search to 
check how close between the solution by each method and 
the optimal solution. We took the optimal makespan as a 
basis and we defined the optimality (D%) as the difference 
of  the result of  each method from the optimal solution. The 
equation for D is as follows: 

D = Solution of each method-Optimal solution �9 100 (26) 
Optimal solution 

If the value of Eq. (26) becomes zero, the solution should 
be optimal. The actual results are as shown in Fig. 7. We 
find the results of the hybrid system are better than those of 
SA. Over one third of result sets of the hybrid system are 
optimal and all of  the results by the hybrid system took the 
values within 1% distance from optimal. 

Next, we measured the computational times of SA and 
this system. The hybrid system used the results of RAES as 
an initial sequence as mentioned earlier. The hybrid system 
had a longer computational time than SA but it reduced the 
search space required to find the solutions. Therefore, its 
computational times can be reduced. 

The computational time diagrams of  SA and the hybrid 
system are also shown in Fig. 8. and 9. 

In the case of the smaller size problems, the computational 
time of the hybrid system is a little longer, just one second, 
than that of SA. This means that it takes less time because 
the search space is not very large and it uses RAES as an in- 
itial state. But, as the size of problems grows, the search 
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Fig. 8. Computational Time of SA and this work for Small 
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\ l  

space increases. In the case of the hybrid system, it proves 
that the search space is reduced more than that of SA and 
the computational time is shorter than that of  SA. 

And we also calculated the computational times of  combi- 
natorial search method and this system. The computational 
time diagrams of combinatorial search method and the hybrid 
system are shown in Fig, 10. In this figure, we notice that the 
computational time of combinatorial search method is much 
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Fig. 10. Comparison of Computational Time of Optimal solu- 
tion and this work solution. 

longer than that of hybrid system as the problem size increas- 
es. In the case of problem size, 9 • 4 and 9 • 8, the computa- 
tional times of combinatorial search method are 495 and 1412, 
respectively. These values are about 80 times of that of hy- 
brid system. It is clear that the combinatorial search method 
can get an optimal solution. But it takes much longer and it 
is used for small size problem. This hybrid system can get 
a nearly optimal solution for small size problem and it takes 
only a few minutes. And when the size of problem increases, 
we can get suboptimal solution by using this system. 

The computational studies were performed using Pentium 
100 MHz and 16 Mbyte RAM under the Windows-95 operat- 
ing system. The program to evaluate the performance of this 
study was coded using the C language and was compiled by 
visual C++. 
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NOMENCLATURE 

aij : transfer time which is required for transferring product i 
out of unit j to (j+l) 

as(l,k) : storage clean-up and preparing time after using l th 
product at k unit 

Cq : completion time of processing i th product in j th unit 
C0Og/) : completion time of processing i th product in j th unit 

with a pipeless storage 
C~ : Co§ % 
CsM : completion time of the final product N from unit 1 to 

the final unit M 

July, 1997 

Ei : makespan as an energy function 
Eq : Cij+aij+si(i+]) j 
k : Boltzman constant 
P(AE) : probability for up-hill movement 
sc : storage checking state 
S~+1)j. set-up time which is required for preparing (i+l)th 

product after i th product 
SS(1,k) : storage starting times for product I after unit k 
SE(l,k)+as(l,k) : storage ending times for product l after unit k 
Ti : temperature as a control parameter 
tq : processing time of product i at unit j 
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